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Objectives. To generate, via application of Bayes Theorem, accurate estimates about the size of
Hispanic populations in California cities from very limited data on the surnames of those living in the
cities. Methods. We make use here of the ratio of those with the name “GARCIA” to those with the
name “ANDERSON” in those cities, one of which is far more likely to be Hispanic and one of which
is far more likely to be non-Hispanic. Results. For four cities that vary dramatically in their Hispanic
populations, using only two common names we are able to estimate the Hispanic population in
the cities. Conclusions. We lay the background for our surprising results by underscoring common
fallacies in using surnames for purposes of ethnic identification, such as the belief that the propor-
tion of bearers of a given name who are Hispanic can be specified as a unique percentage. We show
that how “Hispanic” any given name will turn out to be is a function of the overall demography
of the subpopulation being analyzed, which will also affect the distribution of names within that
subpopulation.

There are a number of situations where we do not have reliable information about
a group’s proportion of a given population, but wish to estimate that proportion. Let
us assume that surnames held by members of the group, say Hispanics,1 are relatively
distinctive. Let us further imagine that we have the names of those in the population
whose group composition we wish to estimate, for example, hospital patients, or registered
voters, or purchasers of some particular commodity. In principle, by matching surname
with estimated ethnicity, we may derive estimates of group population shares in the given
list of names.

The main theoretical result in this article is the exposition of a methodology that uses
very limited data on surnames—indeed, data from only two surnames, “ANDERSON”
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format the Census-based list of common surnames showing the proportion of self-identified Hispanics for each
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1We will use the term “Hispanic” interchangeably with “Latino,” and interchangeably with “Spanish origin,”
in accord with the question currently asked on the Census form.
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and “GARCIA”—to derive estimates of Hispanic population. The main empirical result in
this article is an application of this methodology to California cities that vary dramatically
in their actual Hispanic population, from under 10 percent to well over 90 percent. Our
findings demonstrate the rather remarkable accuracy of this simple methodology.

In order to lay the foundation for our surprising empirical results, we first illustrate
common pitfalls in using names that are drawn from a list of most common Hispanic
surnames to estimate the proportion of Hispanics in some subpopulation. In the next
section, using data taken from the 2010 Census that involves matching surnames to
whether or not individuals with those names self-identify as of Spanish heritage, we show
the power of Bayes Theorem and analyses based on it.2 In a mathematical appendix that
is available online at the website of the senior author,3 we provide a full derivation of the
mathematical intuitions we summarize.

While we only examine issues related to Spanish surname matching in the United
States,4 essentially identical issues arise with respect to name matching for other ethnicities,
for example, Asian Americans (Abrahamse, Morrison, and Bolton, 1994). Moreover, the
methods (and cautionary notes) we provide are general ones that are applicable to any
type of name matching—and not just in the United States.5 Indeed, they are applicable
to many other types of situations distinct from surname matching where there is the need
to balance Type I errors (false positives) and Type II errors (false negatives) by taking into
account baseline probabilities (see below).

Surname List

The U.S. Census has provided a way to estimate the link between name and Hispanic
identity by matching surnames to the proportion of those who self-identified as Spanish
origin on the Census. Based on the 2010 Census, the Census Bureau has created a U.S.-
Census-based list of common surnames (names with greater than 300 instances) that also

2The present article builds on earlier work by the authors (Grofman and Garcia, 2014) introducing a
Bayesian approach to surname matching in the context of voting rights litigation. However, that essay does
not show the power of the ratio approach that is the heart of our estimates of the Hispanic population of
California cities. Bayesian ideas are briefly mentioned in some Census publications without a specified model
or empirical analyses, and some expert witnesses in voting rights litigation in the 1990s considered a Bayesian
approach to Spanish surname analysis, but dropped it after an appellate court decision in Garza v. Los Angeles
County Board of Supervisors in 1990 because it appeared that federal courts had accepted the validity of simply
using the 12,000+ Census Spanish surname list (personal communication, Kenneth McCue, October, 2012).
Elliot et al. (2008, 2009) offer work that is closely related to our own. They consider a number of different
ways of pooling information across cases to improve estimates of racial/ethnic populations, including data
from more than one point in time, information on surnames, and information on demographic attributes
of neighborhoods. However, none of the statistical models they consider take full advantage of a Bayesian
framework.

3See 〈http://www.socsci.uci.edu/�bgrofman/〉.
4Word and Perkins (1996:3–4) identify a number of different areas where Spanish surname matching

methods of one type or another have been used, including studies of births and deaths, hospitalization studies,
retrospective estimates of the Hispanic population among Social Security recipients, analysis of immigration
data, customer data for firms of various types, the creation of customized mailing lists for marketing to the
Hispanic community, and methods for imputations of Hispanic identity where data are missing from Census
forms. Although Word and Perkins (1996) do not mention this application, one arena in which Spanish
surname matching is important in the United States is in voting rights litigation involving issues of vote
dilution (see Grofman and Garcia, 2014, for a review of relevant litigation).

5For example, Bhavnani (2012) has used official records of election commissions in India to examine the
effect of name and caste on voting behavior. Similarly, Harris (2012) uses data on the surnames common in
various ethnic groups to identify the changing ethnic distribution of political appointments in Kenya from
1963 to 2010. Indeed, Harris (2012:1) identifies works from numerous fields, including economics, history,
marketing, population biology, and public health, where names have been taken to be markers of ethnicity.
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provides the proportion of self-identified Hispanics for each name for the country as a
whole. This list is a public document and can be downloaded as a data file. Similar lists
were generated by the Census Bureau for earlier periods (Word and Perkins, 1996:1), and
other surname match-up lists have also been created by various entities,6 though virtually
all surname matching done in situations where legal issues are involved draw in some
fashion on the list prepared by the Census.

In practice, a surname list is usually used to generate a much smaller (and more manage-
able) list of only the surnames that are found to have high/highest proportions (or, in some
applications, numbers) of Hispanics, treating anyone with a name on the list as Hispanic
and anyone whose name does not fall on the list as non-Hispanic. The 2010 Census Bureau
list, which is far and away the most comprehensive to date, includes over 50,000 common
names and covers over 220 million people who have answered whether or not they are of
Spanish origin. It is this data set that we will draw upon in our empirical work.

However, even if one uses a Census surname list, such as those created after the 1990
and 2000 Censuses, individual investigators have varied greatly in how they generated
the list of names they would classify as “Hispanic.” We have identified applications of
surname matching using fewer than 700 names to ones with over 12,000 names being
used.7 While the Census provides information on surname ethnicity characteristics, and
although Census staff have identified smaller subsets of various sizes of “heavily Hispanic”
names, the Census does not offer “best practices” advice on how to make use of these data.
Indeed, there is no developed theory to justify using any particular cut-off point as to how
many names should be treated as Hispanic in some given application of surname matching
technology.8

It might seem obviously preferable to simply take the estimated proportion Hispanic of
each name as input and calculate a weighted average of the Hispanic proportions of all
the names in a database, weighting by name frequency. The reason this is not done is
because of the difficulties of doing the matching when there are tens of thousands of names
to be compared against the names in the data set. In the redistricting arena, for example,
from the 1980 redistricting round to the 2010 redistricting round, every application of
Spanish surname matching of which the faculty co-author of this article is aware involved
treating one set of names as if they were 100 percent Hispanic and all other names as if
they were 0 percent Hispanic.

Issues in Using Surname Lists

There are four fundamental and closely related problems in using a specified list of
heavily Hispanic surnames to identify the Hispanic proportion in a population. Here,
we introduce these errors in intuitive terms and with hypothetical examples. In the next
section, we illustrate them with actual 2010 Census data.

6See, for example, 〈http://www.family-crests.com/family-crest-coat-of-arms/surnames-7-7/common-span-
ish-surnames.html〉. This is a list of 660 names.

7For example, Barreto, Segura, and Woods (2004) draw from Word and Perkins (1996) a list with over 8,000
names, while an expert witness for the plaintiffs, in his testimony in 2012, in Baldus v. Wisconsin Government
Accountability Board, used that same source, but made use of only 639 names.

8For example, Word and Perkins (1996:14) observe: “In theory, we are not providing a Spanish surname
‘list’. Rather, we provide auxiliary data for each surname that can be sorted into a continuum allowing the
prospective user to determine his or her own criteria as to what is or is not a Spanish surname.” This note of
caution is simply not very helpful unless we appreciate how the link between surname and ethnicity depends
upon demographic context, as is done below.
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To describe those errors we need some simple notation. Let p(H) be the probability of
being Hispanic, that is, the (expected) proportion of Hispanics in some given population.
Let p(N) be the probability of having a given name, that is, the (expected) proportion of
those with that name in the same population. When there are two events or conditions or
outcomes, such as H and N, then we can look at the probability of each separately, that is,
p(H) and p(N). Or, we can look at the conditional probabilities, p(H |N) and p(N |H), that
is, the likelihood that someone is Hispanic, given that his or her name is N, on the one
hand, and the likelihood that we will observe someone has the name N given that s/he is
Hispanic, on the other.9

ERROR 1: Treating p(H |N) as if it were a constant.
It seems obvious that the probability of being Hispanic is not the same in different popu-

lations. It seems equally obvious that the probability of having some particular name is not
the same in different populations. However, what is less obvious is that the probability that
someone with a given name is Hispanic will vary with the population under investigation.
In fact, however, there is no such thing as the proportion of bearers of a given name who
are Hispanic. How Hispanic any given name is a function of the overall Hispanicity (i.e.,
Hispanic proportion) of the population, which affects both the conditional probability
that the possessor of any given name will be Hispanic and also the distribution of names.
A simple illustration can make these points clear.

Imagine that, in the population as a whole, 90 percent of those with name “GARCIA”
are Hispanic. What is the proportion of “GARCIAs” who are Hispanic in a subpopulation
that is 100 percent Hispanic? Well, a moment’s reflection reveals that the answer has to
be 100 percent, not 90 percent. Similarly, if we ask what is the proportion of “GARCIAs”
who are Hispanic in a subpopulation that is 0 percent Hispanic, it is obvious that the
answer has to be 0 percent. So clearly p(H |GARCIA) is not a constant; it varies with
demographic context. In neighborhoods whose Hispanic population is between 0 percent
and 100 percent, p(H |GARCIA) will take on intermediate values.10 But it is easy to forget
that reality and act as if the fact that, overall, in some population, 90 percent of the
“GARCIAs” are Hispanic means that in any subpopulation 90 percent of the “GARCIAs”
are Hispanic, and thus “GARCIA” is always to be classified as a Hispanic name. Of course,
even in a neighborhood with few Hispanics, a higher proportion of those with the name
“GARCIA” will be Hispanic than, say, those with the name “ANDERSON.”

Now imagine further that of those who are Hispanic, 20 percent have the name
“GARCIA,” while of those who are not Hispanic, only 1 percent have the name “GAR-
CIA.” Note that these are different percentages than those reported in the paragraph above
because now we are looking at p(N |H) rather than p(H |N). Note also that, while p(H |N) =
1 − p(non-H |N); p(N |H) � 1 − p(N |non-H), that is, in this example 20 percent is not the
same as 99 percent (= 100 percent − 1 percent). How common a name is “GARCIA” in
different subpopulations? Well, obviously it depends upon the demographic composition
of the subpopulation. In an all-Hispanic neighborhood, with the parameters as given above,
we might expect that 20 percent of the population is named “GARCIA.” In a completely
non-Hispanic neighborhood, we might expect that only 1 percent of the population will
have that name. In a mixed neighborhood that is 50 percent Hispanic and 50 percent

9It should be obvious that, in general, p(H |N) � p(N |H), but it is easy to confuse these two conditional
probabilities. If H and N are mutually exclusive, however, then p(H |N) = 0 = p(N |H); if the two conditions
are statistically independent of one another, than we have p(H |N) = p(H) and p(N |H) = p(N).

10For the actual 2010 Census data we review in the next section, even when the population is only
10 percent Hispanic, more than 80 percent of all “GARCIAs” will be Hispanic. In a population that is around
two-thirds Hispanic, more than 99 percent of all “GARCIAs” will be Hispanic.
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non-Hispanic, we might expect that 10.5 percent will have the name “GARCIA.” And so
on.

ERROR 2: Focusing on Type I error and neglecting Type II error.
In the context of estimating a Hispanic population using surnames, Type I errors are

false positives, that is, judgments that someone with a given name is Hispanic when that
person is in fact not Hispanic; while Type II errors are false negatives, that is, judgments
that someone with a given name is not Hispanic when that person is in fact Hispanic.
The standard way to think about surname matching is in terms of finding a list of the
names that are most heavily Hispanic. In so doing, we are looking to minimize Type I
error. But, as we show in the next section, to maximize the accuracy of our dichotomous
classifications of names as either Hispanic or not Hispanic, what we actually need to do is
to set the number of Type I errors (false positives) equal to the number of Type II errors
(false negatives). Looking at Type I errors is not enough. Moreover, as we will illustrate in
the next section, the optimization rule may lead us to a classification scheme with a large
number of false positives!

ERROR 3: Confusing a decision rule for matching names to status as a Hispanic or
non-Hispanic that maximizes the likelihood that we correctly classify given individuals in
terms of their Hispanicity or lack thereof with a rule that maximizes the accuracy of our
overall estimate of the proportion of the subpopulation that is Hispanic.

To minimize errors of individual classification, it would appear that we
should simply predict that anyone with a name that had more than a
50 percent probability of being Hispanic should be labeled Hispanic, while any-
one with a name that had more than a 50 percent probability of being non-Hispanic
should be labeled non-Hispanic. But paying attention to error number 1 tells us that
this is too simplistic. We know that p(H |N) is not a constant. In some subpopulations,
a given name may have a greater than 50 percent chance of being held by someone who
is Hispanic; in other subpopulations that will not be true. But even if we could develop
an optimal surname-based rule for classifying individuals, rather counterintuitively, the
rule that maximizes the number of individuals who are correctly classified as Hispanic or
non-Hispanic (i.e., the rule that minimizes the sum of false positives and false negatives)
is not, in general, the rule that maximizes the accuracy of our prediction of the overall
Hispanic proportion in the subpopulation. As noted above, that rule requires us to set the
number of false positives equal to the number of false negatives.

ERROR 4(a): When we treat anyone with one of the names on a surname list as Hispanic
and anyone whose name is not the list as non-Hispanic, thinking that there exists a single list
of (heavily Hispanic) surnames that is optimal (i.e., error minimizing in terms of predicting
the Hispanic proportion in that subpopulation) in all subpopulations.

Just as p(H |N) is not constant, but rather varies with the demographic context, similarly,
if we sort names in terms of the proportion of those with that name who are Hispanic, the
number of names we want to code as “Hispanic” will vary with the demographic context.
Unfortunately, determining the demographic context is normally exactly what we want to
use the surname list to establish, so that we have a very real “chicken and egg” problem.
The ratio method introduced in the third section of this article is intended to deal with
exactly that problem.

ERROR 4(b): When we treat anyone with one of the names on a surname list as Hispanic
and anyone whose name is not on the list as non-Hispanic, thinking that the more names
we have on the list the more accurate will be our prediction of the Hispanic proportion in
the subpopulation.
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Accuracy in predicting Hispanic proportion in the subpopulation comes in equating
Type I and Type II errors. For any given set of names coded as “Hispanic,” the magnitude
of each of these types will differ with demographic context. We can go wrong in two
different ways: by having more Type I errors than Type II errors, on the one hand, or by
having more Type II errors than Type I errors, on the other hand. In general, the smaller
the list of names coded as “Hispanic,” the higher the proportion of Type II errors and the
lower the proportion of Type I errors. The trick is to find the point (the number of names
on the list) at which the cumulative sum of each of these two types of errors becomes
identical to one another.

Now we turn to an exposition of Bayes Theorem in the context of surname matching.
In this next section, we also illustrate each of the four types of errors, and the correct form
of analysis, using 2010 Census data.

Bayes Theorem: The Basic Principles and Applications to 2010 Census Data

At the heart of our analyses is Bayes Theorem. Before we state that theorem we need some
additional notation. Let p(H and N) be the proportion of those in the subpopulation who
are both Hispanic and have the given name. This joint probability is linked to the individual
probabilities and the conditional probabilities by the Law of Conditional Probability.

p(H and N) = p(H|N) × p(N) = p(N|H) × p(H) = p(N and H) (1)

The Law of Conditional Probability is deceptively simple and yet it is key to understanding
the potential pitfalls in seeking to use surnames to determine the proportion of Hispanics in
a given population.11 It is also the cornerstone for understanding many other fundamental
concepts, such as Type I and Type II errors and Bayes Theorem, that we make use of in
this article.12

In the context of surname analysis, Bayes Theorem, which follows from the Law of
Conditional Probabilities and some other basic features of probabilities,13 states that

p(H|N) = [p(N|H) × p(H)] / [p(N|H) × p(H) + p(N|non − H) × (1 − p(H))] .
(2)

Thus, if we know the proportion of Hispanics who have a given name in the overall
population and we, similarly, know the proportion of non-Hispanics who have that same
name, then we can use that information to specify the conditional probability that someone
with a given name is Hispanic as a function of the proportion of Hispanics in the subpopulation.
This observation lead us to realize that p(H |N) should be viewed as a joint function of p(H)
and other parameters. In other words, as noted earlier, p(H |N) varies with demographic

11Note that if H and N are mutually exclusive, then p(H and N) = 0; if H and N are statistically independent,
then p(H and N) = p(H) × p(N).

12Note, however, that while Bayes Theorem is fundamental to all the analyses in this article, we are not
really engaged in what is commonly called Bayesian analysis or Bayesian inference. Rather than using subjective
judgments about background conditions and a priori likelihoods to adjust probability estimates (see, e.g.,
McGrayne, 2011), we are merely making use of conditional probabilities in a mathematically straightforward
way.

13We can derive Bayes Theorem from the identities below:p(H|N) = [p(N|H) × p(H)] / [p(N and H)
+p(N and non − H)] = [p(N|H) × p(H)] / [p(N|H) × p(H) + p(N| non − H) × p(non − H)].
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context.14 The false belief that the proportion Hispanic among bearers of a given surname
is a fixed value can be thought of as a variant of the “Blue Cab, Green Cab” probability
misassessment made famous by Tversky and Kahneman (1982).15

ILLUSTRATING ERROR 1 WITH 2010 CENSUS DATA: Treating p(H |N) as if it
were a constant.

Table 1 presents an illustrative set of four surnames chosen to reflect a range of situations
along two dimensions: from heavily Hispanic names to names with a low percentage of
Hispanics, and from common surnames to less common surnames.16 For each surname,
we show its count in the data set, the proportion of people with that surname found to be
Hispanic, the surname’s proportion of all the surnames in the Census national data set, its
proportion of all Hispanics in that data set, and its proportion of all the non-Hispanics in
the data set. That is to say, for each surname, we provide both raw counts and percentage
data, along with conditional probabilities both of the conditional probability that, in this
data set, a given name is Hispanic (non-Hispanic) and of the conditional probability that a
Hispanic (non-Hispanic) has a given name. Additionally, we provide some data on where
a given surname ranks with respect to various characteristics of the national data.

In the national data set, the relationship between how numerous is a surname and how
likely it is to be Hispanic is complicated by two factors that go in opposite directions. On
the one hand, the Hispanic population is more concentrated into a limited number of
names than is the non-Hispanic population. For example, half of all Hispanics are captured
by only 1,500 surnames. In contrast, it takes nearly 17,000 surnames to capture half of all
non-Hispanics. On the other hand, in the national data set there are many fewer Hispanics
than non-Hispanics (13.43 percent Hispanic in the sample we are using), which makes it
much harder for a highly Hispanic surname to be among the most common. The latter
effect is the stronger.17

What we can immediately see from these illustrative examples is the need to distinguish
proportion from raw count. For example, because “ANDERSON” is such a common
surname, even though its percentage of Hispanics is low in the national sample, there

14Of course, we need to be careful about the realism of the implicit assumption that prob(name i|Hispanic)
and prob(name i|non-Hispanic) are the same in every subpopulation except for sampling error. But, that
assumption is still more plausible than assuming that prob(Hispanic|name i) and prob (non-Hispanic|name i)
are constant, since we know that to be wrong. When we later use a double application of Bayes Theorem to
estimate the Hispanic population proportion for cities in California, we check that this assumption is plausible
by looking at the magnitude of possible confounds such as Filipino populations who are Hispanic but with a
different surname distribution.

15We may characterize the Tversky and Kahneman (1982) example as follows. A subject is told that in a
given city 85 percent of the taxis are Green Cabs (painted green) and the remaining 15 percent are Blue Cabs
(painted blue), and that all witnesses who saw someone being run over (and fatally injured) agree that it was a
taxi that fled the accident scene. Moreover, the sole (noncolorblind) witness identified the car involved in the
accident as a Blue Cab. The subject is also told that the trial court tested the reliability of the witness under the
same circumstances that existed on the night of the accident and concluded that the witness correctly identified
each one of the two colors 80 percent of the time and made an erroneous classification only 20 percent of the
time. The subject is then asked: “What is the probability that the cab involved in the accident was blue rather
than green?” Most subjects answer with an estimate that is close to 80 percent. The correct answer, using Bayes
Theorem, is that the probability equals 0.8 × 0.15/(0.8 × 0.15 + 0.2 × 0.85) = 0.41. What subjects fail
account for is the baseline proportions (0.15 and 0.85) in doing their probability assessments. It is clear that
(most) subjects do not really understand the concept of conditional probability.

16Recall, however, that all the names in the Census data set we use have at least 300 instances in the national
population.

17In the 2010 Census data set, when we look at the correlation between surname count and surname
proportion Hispanic, we find it to be −0.284. In our analyses, we have arrayed names by proportion Hispanic.
If we were to eliminate names that were highly Hispanic, but also rare, we could cut dramatically the number
of names we would need. For example, to capture 50 percent of the Hispanic population in the United States
as a whole, we would go down from 1,500 names to just 113. These names would, on average, be 90.4 percent
Hispanic in the national data set.
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FIGURE 1

Hispanic Proportion Among Those with Surname GARCIA as a Function of Overall
Hispanic Proportion
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are still far more Hispanic “ANDERSONs” than there are Hispanic “SAGREROs,” even
though those named “SAGRERO” are about 60 times more likely to be Hispanic than are
those named “ANDERSON.”

To see how the proportion of those with a given surname, say “GARCIA,” who are
Hispanic varies with the proportion Hispanic in the population or sample, we solve
for prob(Hispanic|GARCIA) by substituting the values for prob(GARCIA|Hispanic) and
prob(GARCIA|non-Hispanic) from Table 1 into Equation (1) to obtain:

prob(Hispanic|GARCIA)

= 0.02610 × prob(Hispanic)

0.02610 × prob(Hispanic) + 0.00040985 × (1 − prob(Hispanic))
.

Figure 1 plots this function as we vary the proportion Hispanic in the population (or
sample). It is visually apparent from this graph how the value of (Hispanic|GARCIA) can
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vary dramatically depending upon the demographic context. Note, however, that once we
have a 10 percent or higher Hispanic population, those with surname “GARCIA” have a
90 percent or more probability of self-identifying as Hispanic.18

ILLUSTRATING ERROR 2 WITH 2010 CENSUS DATA: Focusing on Type I error
and neglecting Type II error.

As noted earlier, what is usually done with a list of names and their expected Hispanic
proportion is to sort them according to the likelihood that a random draw from those
with that surname will be Hispanic. From that, a much smaller (and more manageable)
list of only the surnames found to have high proportions of Hispanics is generated. Then,
anyone with a name on the list is treated as Hispanic, and anyone whose name does not
fall on the list is treated as non-Hispanic. Here, the focus is on Type I error, though the
presumed justification for doing this is that if we set the threshold appropriately as to what
names to include, then the mistakes (Type I errors) we make by including non-Hispanics
in the set of names we assign to the category “Hispanic” will (roughly) equal the mistakes
(Type II errors) we make by including Hispanics in the set of names we assign to the
category “non-Hispanic.” Also, for practical reasons of manageability, we wish to use a
matching procedure that does not require us to check for tens of thousands of names.

Of course, the equalizing of Type I and Type II errors only occurs at some optimizing
cut-off point. If we use too many names, we overcount Hispanics; if we use too few, we
undercount them. To find the optimizing point for a known distribution of surnames
and a given proportion Hispanic, such as the 13.4 percent Hispanic in the 2010 national
data set, we can find the optimal threshold by looking at the intersection of the curve
giving the cumulative distribution of non-Hispanic names and the curve giving the re-
verse cumulative distribution of Hispanic names. When these two curves intersect then
the number of non-Hispanics to the left side of the intersection point (Type I errors, false
positives) equals the number of Hispanics to the right side of the intersection point (Type
II errors, false negatives). The point where the two lines intersect is the point where Type I
error equals Type II error, and thus where the two types of errors “cancel out.” If we set our
surname threshold at this point, then we will be correctly identifying the “true” Hispanic
population proportion, that is, in this not quite random national sample, involving only
those for whom we have full information about Hispanic status and only names that have
at least 300 instances, we will obtain a value of 13.43 percent.

We find that, for the national data set, this intersection occurs at the name that is located
at the 8.1 percentage point on the cumulative distribution of names arrayed from most to
least Hispanic in percentage in the national sample, as shown in Figure 2. Alternatively,
Figure 3 shows these cumulative frequency distributions in terms of Hispanic proportions
among names. Here, the intersection point occurs at a name that is roughly 34 percent
Hispanic. Of course, the same name, here “VARON,” must be the name corresponding
to the intersection point in both figures—and it is. Those who hold one of the first 4,310
most (in percentage terms) Hispanic names sum up to comprise exactly 13.43 percent of
the people in the data set, that is, the same fraction as the proportion of Hispanics in the
data.19

18Because “GARCIA” is a surname that has a higher proportion of all Hispanics (0.0261) than for
non-Hispanics (0.0004) among its members, the curve shown in Figure 1 is convex.

19A total of 4,310 is the number of most heavily Hispanic names needed to optimally estimate the Hispanic
proportion in the national population when we classify names dichotomously. These most heavily Hispanic
names in the United States contain a very high proportion of all Hispanics; 87.9 percent of all Hispanics
have one of the 4,310 most Hispanic names. Using Bayes Theorem we can also show that Hispanics make up
87.9 percent of the set of people with one of the 4,310 names on the optimizing list. This equivalence of
Hispanic proportion in the name set and proportion Hispanic in the data only holds for the name set that
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FIGURE 2

Equalizing Type I and Type II Errors

FIGURE 3

Equalizing Type I and Type II Errors by Hispanic Proportion in the Surname (From Most
to Least Hispanic)

ILLUSTRATING ERROR 3 WITH 2010 CENSUS DATA: Confusing a decision rule
for matching names to status as a Hispanic or non-Hispanic that maximizes the likelihood
that we correctly classify given individuals in terms of their Hispanicity or lack thereof
with a rule that maximizes the accuracy of our overall estimate of the proportion of the
subpopulation that is Hispanic.

equates Type I and Type II errors. A proof of this result is given in the Mathematical Appendix to this article
that is available online at the senior author’s website 〈http://www.socsci.uci.edu/�bgrofman/〉.
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TABLE 2

Optimal Number of Most Hispanic Surnames to Treat as 100 Percent Hispanic as a Function of
Hispanic Population Proportion (Based on Parameters in 2010 National Census Data for the

Subset with Data on Hispanics)

Hispanic Fraction Optimal Number of Names

0.05 2,620
0.1 3,685
0.2 5,724
0.3 8,525
0.4 11,530
0.5 15,486
0.6 20,011
0.7 24,526
0.8 28,198
0.9 31,596
0.95 34,440

When we put the cutoff at the 4,310th name (VARON), we overcount non-Hispanics
by 3,606,488 (in the 4,310 names that we count as 100 percent Hispanic that are not
100 percent Hispanic), and we undercount Hispanics by 3,606,581 (in the 48,077 names
that we count as 100 percent non-Hispanic that are not 100 percent non-Hispanic). So
we are making many errors of both Type I and Type II; but these errors are canceling out.
Moreover, we find, rather counterintuitively, that it is “optimal” to treat names that are
34 percent or more Hispanic as if they were 100 percent Hispanic, while treating names
less than 34 percent Hispanic as non-Hispanic. In other words, we are counting names
that are not even majority Hispanic as Hispanic—and that is exactly the right thing to do
in these circumstances.

As we have emphasized earlier, optimizing predictive accuracy of the mean proportion
Hispanic in the sample is not the same thing as minimizing the number of Type I errors,
minimizing the number of Type II errors, or minimizing the sum (or some weighed average)
of Type I and Type II errors. Moreover, for aggregate optimization purposes, how many
(what proportion of ) individuals we wrongly classify is essentially irrelevant. It can be
perfectly okay, for aggregate predictive purposes, to misclassify many individuals in both
directions (false positives and false negatives), if, in so doing, the misclassifications in each
direction exactly cancel out.

ILLUSTRATING ERROR 4(a) WITH 2010 CENSUS DATA: When we treat anyone
with one of the names on a surname list as Hispanic and anyone whose name is not the list
as non-Hispanic, thinking that there exists a single list of (heavily Hispanic) surnames that
is optimal (i.e., error minimizing in terms of predicting the Hispanic proportion in that
subpopulation) in all subpopulations.

We show in Table 2 the optimal size of Spanish surname lists for various proportions
of Hispanic in the overall population, ranging from 5 percent to 95 percent for a sample
that has the same conditional probabilities for each surname’s fraction of the Hispanic and
of the non-Hispanic populations as is true in the 2010 national data set with Hispanic
information we have been making use of.

ILLUSTRATING ERROR 4 (b) WITH 2010 CENSUS DATA: When we treat anyone
with one of the names on a surname list as Hispanic and anyone whose name is not on
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the list as non-Hispanic, thinking that the more names we have on the list, the more
accurate will be our prediction of the Hispanic proportion in the subpopulation.

We can look at the question of an optimal cutoff for the surname list to be treated as 100
percent Hispanic from the reverse perspective. We have shown that, for our national data
subset, with a 13.43 percent Hispanic population share, the optimizing cut-off point is
4,310. That is, if we take the 4,310 names that are most Hispanic, in Hispanic population
percentage, and treat them as 100 percent Hispanic, those 4,310 surnames are held by a
set of individuals who together constitute 13.43 percent of the national population, that
is, the actual proportion. But, what happens if we use a smaller number of surnames to
estimate the national Hispanic population via surname matching (or a larger one)? If we
were to use, say, only the top 639 Hispanic percentage surnames in our data set, we would
estimate the national Hispanic population to be only 8.39 percent, that is, we would miss
more than a third of all Hispanics. If there are very few Hispanics in a population, it
is easier (requires fewer surnames) to accurately estimate the proportion Hispanic in the
population by counting as Hispanic all those with a given relatively small set of surnames;
while we need many names to accurately assess the Hispanic population proportion when
the Hispanic population proportion is high. However, we can still use too many names.

If we were to use the top 8,000 names in Hispanic percentage surnames, we would
estimate the national Hispanic population to be 15.56 percent, that is, we would be
estimating the Hispanic population to be about 115 percent of its actual size. If we were to
use 12,497 names, which is the number most often used in the studies done in the 1980s,
for 2010 data, we would estimate the national Hispanic population to be 18.19 percent,
about 135 percent of its actual size.

Using Bayes Theorem to Estimate the Hispanic Proportion of California Cities

Figure 4 shows how the occurrence of the surname “ANDERSON” varies with the
proportion Hispanic in the population. This graph parallels the earlier graph shown for
the surname “GARCIA” (Figure 1).

In the national population, which is 13.43 percent Hispanic, there are somewhat more
“GARCIAs” (858,289) than there are “ANDERSONs” (762,394), for a ratio of 1.13.
What happens to the relative proportion of these two names in the population as we
change the overall proportion Hispanic? To answer this question, we can integrate into
a single graph the information from Figures 1 and 4 about the names “ANDERSON”
and “GARCIA.” As shown in Figure 5, what we see is that, in a population that is
0 percent Hispanic, there are 1/10th as many “GARCIAs” as there are “ANDERSONs.”
In a population that is 100 percent Hispanic, there are estimated to be 65 times as many
“GARCIAs” as “ANDERSONs.” The ratio hits 1 at about 12 percent Hispanic in the
population.

Figure 5 shows how the ratio of the occurrence of given pairs of surnames, “GARCIA” and
“ANDERSON,” can be expected to vary with the proportion Hispanic in the population.
But, we can also do the analysis in the opposite direction. If, say, we observe a given ratio
of “GARCIAs” to “ANDERSONs” in a population, we can read from the graph in Figure
5 what proportion Hispanic in the population would have been expected to give rise to
that ratio.
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FIGURE 4

Hispanic Proportion Among Those with Surname ANDERSON as a Function of Overall
Hispanic Proportion
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In Figure 5, we also show estimated proportion of Hispanic in the city based on the
“GARCIA” to “ANDERSON” ratio for four California cities—San Carlos, with a low
Hispanic population of 10.1 percent (ca. 2010), Brea, with a moderately low Hispanic
population of 25 percent (ca. 2010), Merced, with a moderately high Hispanic popula-
tion of 49.8 percent (ca. 2010), and Calexico, with a very high Hispanic population of
98.6 percent (ca. 2010). Names are counted by using ReferenceUSA, which provides a
database of directory information compiled from White Pages nationwide. ReferenceUSA
has a total of 18,655 names for San Carlos; 16,835 names for Brea; 25,824 names for
Merced; and 10,037 names for Calexico. According to the 2010 Census, San Carlos has a
population of 28,406 and 11, 332 households; Brea has a population of 39,282 and 14,386
households; Merced has a population of 78,958 and 23,753 households; and Calexico has
a population of 38,572 and 9,561 households.

By looking at the phonebook data, we get a ratio of “GARCIAs” to “ANDERSONs”
for each of the four Californian cities. A ratio of 0.59 is found for San Carlos (24/41); a
ratio of 1.780 is found for Brea (73/41); a ratio of 6.08 (237/39) is found for Merced;
and a ratio of 48.2 is found for Calexico (241/5). Translating backward from the ratio, we
can get to the estimated Hispanic population proportion that corresponds to that ratio in
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FIGURE 5

Proportion of Hispanic in San Carlos (Actual H = 0.10), Brea (Actual H = 0.25), Merced (Actual
H = 0.50), and Calexico (Actual H = 0.99): Estimated from GARCIA to ANDERSON Ratio in

City Phonebooks

the national data. For San Carlos, the estimated Hispanic proportion is around 0.067; for
Brea, the estimated Hispanic proportion is 0.21; for Merced it is 0.48; and for Calexico
it is 0.964. Considering (a) that we are projecting values derived from national data into
particular cities in California, (b) that the phonebook data suffer from an unknown bias
in terms of the relative proportions of Hispanics and non-Hispanics who are too poor to
have land lines, (c) that the phonebook data suffer from an unknown bias in terms of the
relative proportions of Hispanics and non-Hispanics who can afford to have land lines but
who choose to rely on a cell phone or Skype, and (d) that the phonebook data suffer from
an unknown bias in terms of the relative proportions of Hispanics and non-Hispanics who
have landlines but choose not to be listed in the online phone book, it is truly remarkable
to have the kind of fit shown here: 0.067 versus 0.10, 0.21 versus 0.25, 0.483 versus 0.498,
and 0.963 versus 0.986.

The use of the names “ANDERSON” and “GARCIA” is not accidental, though it is also
true that each of these names has a personal significance to one of the authors. They were
chosen because we expect the pair-wise ratios to be most predictive of the true Hispanic
proportions if (a) one name is heavily Hispanic and one name is heavily non-Hispanic,
(b) both are common names, and (c) each has a nontrivial occurrence rate among the
opposite ethnicity. “GARCIA” and “ANDERSON” satisfy these properties. Looking at
ratios involving names that are uncommon will not be useful when we are looking at data
subsets smaller than the full national data set, since such names may be nonexistent in our
data, or have so few instances that ratio estimates will be misleading because of sampling
error.

Even though there are some non-Hispanic groups in California, for example, Por-
tuguese and Filipinos, who have a high incidence of “Hispanic” names, the problem this
nonuniformity of name structure will cause for ratio analyses of the sort we have performed
here is a matter that can only be studied empirically. For California cities in general, and
the four cities for which we have reported analyses using the pair-wise ratio method in
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particular, we have checked to see if the presence of Filipinos or Portuguese is large enough
to cause any kind of real problem, and it clearly is not. On the other hand, while we cer-
tainly recognize that there are various Hispanic populations that have a different surname
structure (e.g., Mexican American, Cubans, Central Americans, etc.), and the distribution
of these different Hispanic groups varies geographically, in areas where there are substan-
tial concentrations, say of Cuban Americans, it should be possible to develop tailor-made
surname distribution statistics for such groups.

Discussion

As a necessary prequel to our subsequent results for California cities, we began this
article by showing how to use Bayes Theorem to demonstrate that the optimal number
of (most heavily Hispanic) names to count as “Hispanic” varies with the demographic
context in a way that can be specified precisely in terms of balancing off Type I errors (false
positives) and Type II errors (false negatives). As a population grows more (less) Hispanic,
the proportion of Hispanics among those with any given surname will grow (decline).
However, while these analyses show that we size the list of names we use for identifying
Hispanic names (with names not on the list being counted as non-Hispanic) to vary with
demographic context, they do not show us how to solve the “chicken and egg” problem
of finding an optimal size for the list to be used for any particular subpopulation.20 If
we knew the Hispanic subpopulation proportion, we would not need to be doing surname
matching. The real contribution of the article is the new pair-wise ratio method we provide
to estimate the Hispanic proportion via surname data that allows us to bypass this “chicken
and egg” problem.

Using a phone directory, we tested this method with data from four California cities that
vary greatly in their proportion Hispanic (from 10 percent to over 98 percent). Despite
all the obvious limitations of a phone-directory-based list of names, for all four cities, we
find a remarkable fit to the estimates derived from only two names, “ANDERSON” and
“GARCIA.” That simple ratio approach, which requires us to count only two names, was
never off by more than 4 percentage points and, in some cities, came within 2 percentage
points of the true value. It is also far easier to apply than the usual surname matching, with
lists of names that may number in the thousands.

We believe this pair-wise approach is one very much worthy of further investigation.
By conducting this type of analysis for selected pairs of surnames, we can, we believe,
set plausible bounds on the likely proportion Hispanic in the population whose ethnic
characteristics we are seeking to estimate, at least if that population is large enough that
sampling error will not make it impossible to derive reliable results from the ratio method.
Moreover, if we need more precision, we can use this method as only a first approximation
for the Hispanic proportion of the electorate. Then we would use the estimate derived

20No Census publications about surname matching of which we are aware lay out in a clear fashion exactly
how prob(Hispanic|name i) can be expected to vary with prob(name i|Hispanic) and prob(Hispanic) in the
data set. Furthermore, there does not appear to be an academic article that does so clearly either. Passel and
Word (1980) suggest that the Spanish surname list they compile, one with over 12,000 names, should be used
only in areas of high Hispanicity. But they also acknowledge that even using 12,000+ names will tend to
underestimate Hispanic population in areas of very high Hispanic concentration, although they indicate that
the magnitude of error in this instance, which they assert to be around 5 percentage points, is tolerable. Word
and Perkins (1996) simply caution those doing Spanish surname matching that the accuracy of any list varies
with geography.
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from a surname list that was appropriate for approximately that proportion Hispanic in
the name list to develop a more accurate final estimate.

The idea of surname ratios may also be applicable to developing other ways to improve
surname matching. For example, in dealing with Asian surnames, names like Lee tend to
be highly context dependent. By using ratios such as Kim/Lee or Fong/Lee, we may be able
to improve our ability to differentiate among Asian populations (say Korean vs. Chinese)
and, in a similar fashion, to distinguish Lees who are of Asian descent from those who may
be African American or Caucasian.
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Five propositions about surname matching 

 
  Let  

 

hi = the number of Hispanics among those with the ith name 

nonhi = the number of non-Hispanics among those with the ith name 

pi = the number of  people with the ith name 

N = total number of distinct names in the data set 

H = total number of Hispanics in the data set 

nonH = total number of non-Hispanics in the data set 

prob(Hispanic|name i)  = The proportion of individuals with a given  name who self-

identify as Hispanic/of Spanish heritage 

prob(name i |Hispanic)  = the proportion of Hispanics who have a given name (in the 

national sample of non-Hispanics)  

prob(non-Hispanic|name i)  = The proportion of individuals with a given  name who self-

identify as non-Hispanic 

prob(name i |non-Hispanic)  = the proportion of non-Hispanics who have a given name 

(in the national sample of non-Hispanics) 



prob(Hispanic) = 1 – prob (non-Hispanic) = the proportion of Hispanic /those of Spanish 

heritage in the sample 

 the cumulative mean proportion Hispanic among the names arrayed from most to 

least  Hispanic, for the range from the first to the nth name. 

 

 the cumulative mean proportion non-Hispanic among the names arrayed from 

most to least  Hispanic, for the range from the first to the nth name. 

 

 

Proposition 1: If, for each surname, in any sample, the surname’s share of total Hispanic 

population, prob (name i |Hispanic), and its share of total non-Hispanic population, prob 

(name i |non-Hispanic), is treated as a random sample from the corresponding national 

name distributions within each of the two groups, then the proportion of individuals with 

a given surname who self-identify as Hispanic, prob(Hispanic|name i), is not a constant, 

but is a function of the Hispanic proportion (and thus also of the non-Hispanic 

proportion) of the sample we are looking at. In particular,    

 

 

prob(Hispanic|name i)   =    

                                      
                            prob(name i |Hispanic) * prob(Hispanic) 

 __________________________________________________________________      
  

prob(name i |Hispanic) * prob(Hispanic)  + prob(name i |non-Hispanic) * prob(non-Hispanic) 
   

 

Proof:  The result is simply a restatement of Bayes Theorem. The basis of Bayes 

Theorem is the identity   
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prob(Hispanic|name i) * prob(name i)  =  prob(name i |Hispanic) * prob(Hispanic) 

 

From this identity we derive the equation 

 

prob(Hispanic|name i)  =  (prob(name i |Hispanic) * prob(Hispanic)) / prob(name i) 

 

Now, we can use a further identity, namely  

 

p(A) = p(A|B)p(B) + p(A|not B)p(not B) 

 

to show, after some straightforward algebra,  that 

 

prob(Hispanic|name i)   =    

                                      
                            prob(name i |Hispanic) * prob(Hispanic) 

 __________________________________________________________________      (1)                                                                                      
  

prob(name i |Hispanic) * prob(Hispanic)  + prob(name i |non-Hispanic) * prob(non-Hispanic) 
 

But, from Eq. (1), we can see that prob(Hispanic|name i) depends both on the underlying 

conditional probabilities, prob (name i |Hispanic) and  prob (name i |non-Hispanic), which under 

the given assumptions, for a large enough sample, we may take to be essentially fixed, while the 

further parameter,  

 

prob(Hispanic)  = 1- prob(non-Hispanic),  

 

is context dependent.  Thus, prob(Hispanic|name i) varies with the Hispanic proportion in the 

sample.        q.e.d.  

 

 

Proposition 2: If we array names from most Hispanic to least Hispanic and we treat the 

first s names as 100% Hispanic and the remaining names (from the (s+1)th to the Nth) as 



non-Hispanic, then the value of s such that the names classified as Hispanic yield the true 

Hispanic population is given by s such that 

 

 

 

Proof:   If we array names from most Hispanic to least Hispanic and we treat the first s 

names as 100% Hispanic and the remaining names (from the (s+1)th to the Nth) as non-Hispanic, 

then we are positing that the total Hispanic population is given by ,  but  

 =  + =  +  = H. 

 

q.e.d. 

 

In other words, to maximize the accuracy of our [0,1] classifications of names as either 

Hispanic or not Hispanic we wish to set the number of Type I errors (false positives) equal to the 

number of Type II errors (false negatives).  

 

Proposition 3:  If, for each surname, its share of total Hispanic population and its share of 

total non-Hispanic population is treated as fixed, then the number of (most Hispanic) 

names we would need to use to equalize the number of Type I and Type II errors 

increases with the proportion Hispanic in the total population.  

 
 

Proof: The proof of this proposition is quite straightforward.   For any given cutoff point, 

as we increase the proportion Hispanic in the sample, the number of Type I errors (false 

positives) above that cutoff declines, since we are reducing the share of non-Hispanics in the 

population. Thus, the number of non-Hispanics in each surname will also go down since we are 

assuming that the proportion of non-Hispanics coming from any given surname is fixed. 
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Similarly, for that same cutoff point, as we increase the proportion Hispanic in the sample, the 

number of Type II errors (false negatives) below that cutoff increases, since we are increasing 

the share of Hispanics in the population. Thus, the number of Hispanics in each surname will 

also go up since we are assuming that the proportion of Hispanics coming from any given 

surname is fixed.  But, if we have reduced Type I error to the right of the former cutoff and 

increased Type II error in the other direction, then to equalize the two now requires us to increase 

the number of names we count as 100% Hispanic, i.e., lower the threshold.1  q.e.d.     

 

 

In the next proposition we offer an alternative way to think about what needs to be 

equalized to maximize the predictive success of our choice of name threshold. 

 

Proposition 4: If we array names from most Hispanic to least Hispanic and we treat the 

first s names as 100% Hispanic and the remaining names (from the (s+1)th to the Nth) as 

non-Hispanic, then the value of s such that the names classified as Hispanic yield the true 

Hispanic population is given by s such that the (cumulative) average Hispanic share of 

the population among the names from the first to the sth name equals the proportion of 

the total Hispanic population found among those names,  i.e., 

 

 =  

 

Proof: Once we set up this proposition in mathematical notation, the result become 

obvious, since we have the same numerator on both sides and the denominators are equal by 

assumption of our choice of s.   q.e.d. 

The intuitive meaning of this proposition is less clear than that of either of our other three 

propositions, but in the later empirical section we will be able to give Proposition 4 an 

enlightening (and perhaps surprising) empirical content. 

                                                
1 Note that this result does not necessarily go through were we to array names not according to 
their percentage Hispanic but according to what proportion of all Hispanics are found with that 
name. The latter takes into account how common the name is, while the former does not. 
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Proposition 5: Consider any two surnames, say A and B, that have the property that they 

differ from one another both in the proportion of all those who claim Hispanic heritage 

who have each of the two surnames and in the proportion of all those who do not claim 

Hispanic heritage who have each of the two surnames.  If we assume that any given 

population of Hispanics is a close to random sample from the national population of 

Hispanics in terms of surnames and any population of non-Hispanics is a close to random 

sample from the national population of non-Hispanics in terms of surnames, and we 

know the shares of the national Hispanic and national non-Hispanic population, 

respectively, that each surname constitutes, by finding the ratio of those in a given 

population who have surname A to those who have surname B, we can directly infer the 

Hispanic proportion of that population. 

 

Proof: This proposition follows directly from the law of conditional probability and from 

Bayes Theorem.  We start with   

 

prob(Hispanic|name A) * prob(name A)  =  prob(name A |Hispanic) * prob(Hispanic) 

 

From this identity we derive the equation 

 

prob(name A) =  (prob(name A |Hispanic)* prob(Hispanic)/ prob(Hispanic|name A) 

 

Similarly, 

 

prob(name B) =  (prob(name B |Hispanic)* prob(Hispanic)/ prob(Hispanic|name B) 

 

 

Dividing these two equations we obtain the ratio 

 

prob(name A)/ prob(name B)  =  

 



 

 

                  prob(name A |Hispanic)* prob(Hispanic) / prob(Hispanic|name A)  

         ___________________________________________________________          (2) 

prob(name B |Hispanic)* prob(Hispanic)/ prob(Hispanic|name B) 

 

 

Therefore,   

   prob(name A)/ prob(name B)  =  

 

                                prob(name A |Hispanic) / prob(Hispanic|name A)   

                             __________________________________________                         (2)’ 

 prob(name B |Hispanic)/ prob(Hispanic|name B) 

 

 

since one of the terms in Eq. (2) is found in both numerator and denominator and may be 

cancelled out. 

 

Moving terms from numerator to denominator, we may write Eq. (2)’ as Eq. (2)’’ below. 

 

   prob(name A)/ prob(name B)  =  

 

                                prob(name A |Hispanic) * prob(Hispanic|name B)   

                             __________________________________________                       (2)’’ 

 prob(name B |Hispanic)*prob(Hispanic|name A) 

 

 

Now, we can twice substitute the identity of Bayes Theorem, Eq. (1) into Eq. (2), to 

eliminate two of the conditional probabilities in that equation. We obtain, after some algebra, Eq. 

(3).    

 



   

 

  prob(name A)/ prob(name B)  =  

 
prob(name B |Hispanic) * prob(Hispanic) * prob(name A |Hispanic) 
/(prob(name A |Hispanic) * prob(Hispanic)  + prob(name A |non-Hispanic) * prob(non-Hispanic)) 

 ____________________________________________________________________________________                           (3)     
  

prob(name A |Hispanic) * prob(Hispanic) * prob (name B |Hispanic) 
/(prob(name B |Hispanic) * prob(Hispanic)  + prob(name B |non-Hispanic) * prob(non-Hispanic)) 
 
 

  

Which, in turn, after cancellation, simplifies to 

 

  prob(name A)/ prob(name B)  =  

 
 prob(name A |Hispanic) * prob(Hispanic)  + prob(name A |non-Hispanic) * prob(non-Hispanic)  

 ____________________________________________________________________________________                           (3)’     
  

 prob(name B |Hispanic) * prob(Hispanic)  + prob(name B |non-Hispanic) * prob(non-Hispanic) 
 

 

But, since we may take prob(name A |Hispanic), prob(name A |non-Hispanic),  

prob(name B |Hispanic),  and prob(name B |non-Hispanic) to  be essentially known parameters 

(from the national sample), and since  

 

 prob(Hispanic) = 1 – prob(non-Hispanic)  

= the proportion of Hispanic /those of Spanish heritage in the sample,  

 

once we know the actual ratio of those with surname A to those with surname B in our sample, 

under the above assumptions, by plugging in the other four known (subject only to sampling 

error) parameter values into Eq. (3), after straightforward simple algebra, we can directly 

calculate the Hispanic proportion in the sample which, of course, is what we want to find.         

q.e.d. 

 

 


